PUBLICIDADE
O que é uma equação de segundo grau?
Uma equação de segundo grau é uma igualdade que contém uma variável de grau até 2, ou seja, nessa equação temos que ter uma incógnita de grau 2 e podemos ter também ela de grau 1.
É importante notar que as equações do segundo grau, para nossa variável x, serão sempre da forma ax² + bx + c, para a,b,c ∈ R, isto é, para a, b, c pertencentes ao conjunto dos números Reais e tais equações sempre terão 2 soluções, também chamadas de 2 raízes que satisfazem a mesma equação.
As raízes podem ser do tipo:
– Dupla: ambas as raízes são iguais.
– Distintas reais: as raízes são pertencentes ao conjunto dos números reais e são diferentes entre si
– Distintas imaginárias: as raízes são pertencentes ao conjunto dos números complexos, isto é, são descritas por a+bi, em que a, b pertencem ao conjunto dos números reais i é a unidade imaginária, i² = -1, e a outra solução será dada pelo número complexo conjugado da primeira, isto é, será a-bi.
Por exemplo: x² – 4x + 5 = 0
Como resolvemos uma equação de segundo grau?
Para conseguir o valor da variável que satisfaz a equação de segundo grau, iremos utilizar o método de Bhaskara.
Vamos conhecer, primeiro, quem foi o criador deste método. Bhaskara Akaria foi um matemático indiano que viveu durante o século XII e conseguiu formular uma solução extremamente poderosa de resolução de equação de segundo grau. O seu método consiste em avaliar a equação do tipo ax² + bx + c = 0 da seguinte forma:
Para facilitar os cálculos, deixaremos a variável de segundo grau multiplicada por 1:
Vamos agora eliminar o termo independente (que não é multiplicado por nenhuma potência da variável) do lado esquerdo:
Agora, somaremos um termo b²/4 a² a fim de poder montar o produto notável a seguir:
Para prosseguir, iremos transformar o lado esquerdo em um produto notável:
Agora, iremos tirar o Mínimo Múltiplo Comum das frações:
Agora, estamos encaminhando para os passos finais. Precisamos somente isolar o x realizando operações. Neste passo, é importantíssimo que você note que ao realizar a operação da raiz quadrada, existem 2 resultados possíveis, um negativo e outro positivo. Lembre-se que (-4)² = (4)² = 16, por exemplo.
Estamos chegando muito perto do resultado final!
Basta subtrair b/2a e teremos um resultado generalizado para a resolução de equação de segundo grau:
Para facilitar, podemos chamar b²-4ac de Δ, então, teremos a resposta:
Luisa Boccardo Burini
Redes Sociais